Bibliografia General (APA)


  1. Puertoluna. (s.f.). Why should we use helium-3 as nuclear fuel? Puertoluna. https://puertoluna.com/why-should-we-use-helium-3-as-nuclear-fuel/

  1. Profolus. (2023). Advantages and disadvantages of nuclear fusion power. Profolus. https://www.profolus.com/topics/advantages-and-disadvantages-of-nuclear-fusion-power/
  2. Link, P. (2023). Lunar regolith and its composition: Helium-3 content in the moon's surface material. Springer. https://link.springer.com/chapter/10.1007/978-3-031-09883-3_21
  3. Lunar and Planetary Institute. (2007). The lunar regolith and helium-3 content. LPI. https://www.lpi.usra.edu/meetings/lpsc2007/pdf/2175.pdf
  4. NASA. (2021). Helium-3 mining on the Moon: An exploration of potential lunar resources. NASA. https://ntrs.nasa.gov/api/citations/20210022801/downloads/AIAA%20ASCEND%202021%20Paper_211018.pdf
  5. NASA. (1991). The presence of helium-3 in the lunar regolith: A study of lunar surface material. NASA. https://ntrs.nasa.gov/citations/19910015921
  6. Kulcinski, G. L., & Schmitt, H. H. (1987). Economic Geology of Lunar Helium-3. NASA Technical Reports Server. https://ntrs.nasa.gov/api/citations/19890005478/downloads/19890005478.pdf
  7. NASA. (2020). Lunar Surface Innovation Initiative. NASA. https://www.nasa.gov/space-technology-mission-directorate/lunar-surface-innovation-initiative/
  8. Beike, D. (2013). Mining of Helium-3 on the Moon: Resource, Technology, and Commerciality—A Business Perspective. https://i2massociates.com/downloads/CHAPTER03.pdf
  9. Stobiński, L., et al. (2021). Separation of 3He Isotope from Liquid Helium with the Use of Entropy Filter Composed of Carbon Nanotubes. Energies, 14(20), 6832. https://doi.org/10.3390/en14206832
  10. Colaprete, A., et al. (2010). Detection of Water in the LCROSS Ejecta Plume. Science, 330(6003), 463–468. https://doi.org/10.1126/science.1186986
  11. Anand, M., et al. (2012). A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planetary and Space Science, 74(1), 42–48. https://doi.org/10.1016/j.pss.2012.08.012
  12. NASA. (2005). Cryogenic Fluid Management for Spacecraft Propulsion Systems. NASA Technical Reports. https://ntrs.nasa.gov/api/citations/20050200774/downloads/20050200774.pdf
  13. McCarley, R. E., & Flynn, T. M. (2000). Activated carbon storage of hydrogen and helium isotopes. Journal of Alloys and Compounds, 310(1–2), 315–319. https://doi.org/10.1016/S0925-8388(00)01156-0
  14. ASTM International. (2013). Standard Specification for Titanium and Titanium Alloy Welded Pipe (ASTM B862-13). West Conshohocken, PA: ASTM International.
  15. Kasting, J. F., & Pollack, J. B. (1993). The geological history of water on Mars: implications for the evolution of life. Proceedings of the National Academy of Sciences, 90(12), 6170-6174. https://doi.org/10.1073/pnas.90.12.6170
  16. Denholm, P., & Margolis, R. M. (2016). The Value of Distributed Solar in California: Final Results from the California Solar Initiative's Evaluation of Residential and Commercial Solar Programs. National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy16osti/66461.pdf
  17. O'Neill, M., & Clayton, E. (2021). Helium-3 as a potential fuel for lunar energy production. Energy Policy, 149, 112020. https://doi.org/10.1016/j.enpol.2020.112020
  18. Ippolito, R. (2019). Fusion Energy and Helium-3: The Path to Future Lunar and Terrestrial Energy. International Journal of Energy Research, 43(4), 1379-1387. https://doi.org/10.1002/er.4439
  19. Cammarano, S., & Khare, S. (2020). Solar Energy on the Moon: Opportunities and Challenges for Lunar-Based Power Systems. Space Science Reviews, 216(4), 81. https://doi.org/10.1007/s11214-020-00725-0
  20. Wall, M. (2017). Lunar Helium-3 Harvesting: A Potential Solution for Earth's Energy Needs. Space.com. https://www.space.com/35290-lunar-helium-3-harvesting-energy
  21. Eckart, P. (2006). The Lunar Base Handbook: An Introduction to Lunar Base Design, Development, and Operations (2nd ed.). McGraw-Hill.
  22. Schrunk, D., Sharpe, B., Cooper, B. L., & Thangavelu, M. (2007). The Moon: Resources, Future Development and Settlement (2nd ed.). Springer.
  23. Fincannon, J. (2018). Power options for a lunar outpost. NASA Glenn Research Center Technical Reports.
  24. Johnson, A. S., & Wetzel, J. P. (2014). Lunar Lava Tubes as a Location for a Moon Base. NASA Innovative Advanced Concepts (NIAC).
  25. NASA. (2020). Lunar Surface Habitat Concept: Architecture and Design Considerations. NASA Technical Reports. https://ntrs.nasa.gov/citations/20200000855
  26. ESA. (2019). Moon Village: A vision for global cooperation and sustainable lunar exploration. European Space Agency. https://www.esa.int/About_Us/Ministerial_Council_2019/Moon_Village
  27. Bagdigian, R. M., & Gentry, G. L. (2017). The International Space Station Environmental Control and Life Support System (ECLSS): Lessons learned and future needs. NASA Johnson Space Center. https://ntrs.nasa.gov/citations/20170005320
  28. Howe, A. S., & Sherwood, B. (2009). Out of This World: The New Field of Space Architecture. American Institute of Aeronautics and Astronautics (AIAA). https://doi.org/10.2514/4.479350

Suscríbete a nuestra newsletter

Creado con Webnode Cookies
¡Crea tu página web gratis! Esta página web fue creada con Webnode. Crea tu propia web gratis hoy mismo! Comenzar